Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Psychol. neurosci. (Impr.) ; 6(2): 199-212, jul.-dez. 2013. ilus
Article in English | LILACS | ID: lil-699236

ABSTRACT

The present paper focuses on a classic hyperacuity, Vernier acuity-the ability to discriminate breaks in the collinearity of lines or edges on the order of only arcseconds of visual angle. We measured steady-state sweep visual evoked potentials (sVEPs) in response to 6 Hz periodic breaks in collinearity (Vernier offsets) in horizontal squarewave gratings. Vernier thresholds, estimated by extrapolating the amplitude of the first harmonic (1F) to 0 µV, were measured for gratings with 4%, 8%, 16%, 32%, 64%, and 80% contrast, with gaps of 0, 2, or 5 arcmin introduced between neighboring bar elements that formed the Vernier offsets. Thresholds for the 2F response component provided an estimate of motion thresholds. The data confirmed and extended evidence that the odd- and even-harmonic components reflect cortical activity of different neurons (i.e., neurons that respond asymmetrically to the periodic breaks in alignment and neurons that respond symmetrically to the local relative motion cue of the stimulus). Suprathreshold data (peak amplitude, response slope, and response phase at the peak amplitude) provided additional independent evidence of this notion. Vernier thresholds decreased linearly as contrast increased, with a slope of approximately -0.5 on log-log axes, similar to prior psychophysical results. The form of contrast dependence showed more similarity to measures of magnocellular ganglion cell spatial precision than measures from parvocellular ganglion cells. Our data thus support the hypothesis that magnocellular ganglion cell output from the retina has the requisite properties to support cortical calculation of Vernier offsets at a hyperacuity level...


Subject(s)
Humans , Male , Female , Adult , Evoked Potentials, Visual , Visual Acuity
2.
Psychol. neurosci. (Impr.) ; 2(2): 163-177, Dec. 2009. graf
Article in English | LILACS | ID: lil-574094

ABSTRACT

We introduce a new VEP paradigm - the Jitter Spatial Frequency (JSF) Sweep VEP - that permits efficient mapping of the spatiotemporal tuning of the developmental motion asymmetry (DMA). Vertical sinewave gratings undergoing 90º horizontal oscillatory displacements (6 or 10 Hz) were presented while their SF was swept over 2 to 5 octaves during each VEP trial. JSF sweep VEPs were recorded from 28 infants (8-43 weeks), and symmetric (second-harmonic, F2) and asymmetric (F1) components of the VEP were measured. JSF sweeps can provide four useful estimates: (1,2) the high-SF cutoff of F1 and F2 responses estimates the spatial resolution of direction-selective (DS) and non-DS mechanisms, respectively; (3) the low-SF cutoff for F1 estimate the SF-boundary between mature (F1 absent) and immature (F1 present) DS mechanisms; and (4) the F1 high-SF cutoff estimates the lower velocity limit of cortical DS cells. For 6 Hz, the low-SF F1 cutoffs increased two times faster than traditional (contrast-reversal) VEP grating acuity (0.5 vs ~0.25 octaves/month), and twice that of the high-SF F1 and F2 cutoffs. This implies that no single mechanism can account for the DMA at both low and high SFs. At 10 Hz, the DMA exhibited no significant development, consistent with slower maturation of DS mechanisms at higher ST frequencies. The F2 high-SF cutoffs were higher than F1 at both 6 and 10 Hz, suggesting higher spatial resolution for non-DS (pattern) vs DS (motion) mechanisms. Finally, the lower velocity limit of the DS mechanisms decreased from ~2 deg/sec at 8 weeks, to 0.75 deg/sec at 33 weeks, similar to analogous limits for direction-of-motion identification in adults (~0.5 - 1 deg/sec), and close to prior VEP estimates in infants (0.6 deg/sec).


Subject(s)
Humans , Infant , Child Development , Evoked Potentials, Visual/physiology , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL